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We consider the fundamental problem of “what makes atoms stick together in molecules,
crystals, or clusters?” The Heitler and London paper (1927) on the hydrogen molecule
marked a first attempt to discuss, in terms of quantum mechanics, the interaction of two
atoms with unpaired spins. The aim of this note is to show how the primitive concepts used
eighty years ago still retain a certain validity even in a much more general context. We con-
sider in fact the interaction of two arbitrary systems, each with a resultant spin angular mo-
mentum, and show how the interaction energy depends on the scalar product of the two
resultants. The actual nature of the two systems is irrelevant: they may be atoms, molecules,
or ionic species of any kind each described by a wave function which may be, in principle,
exact. This provides a first step in the formulation of any general theory of cohesion.
Keywords: Cohesion; Intermolecular interaction; Electron density; Density matrix; Spin cou-
pling; Hamiltonian; Quantum chemistry.

Jaroslav Koutecký will always be remembered as one of the founders of
quantum chemistry in the Czech Republic. Throughout his life he grappled
with the fundamental problem of “what makes atoms stick together in mol-
ecules or clusters?” and his many outstanding publications testify to the
success of this enterprise. The present work, affectionately dedicated to his
memory, treats one aspect of this very general problem.

The famous paper of Heitler and London1 provided a first step towards
answering the question in terms of quantum mechanics: if the electrons on
two atoms have their spins coupled antiparallel (giving a singlet state) they
can provide an “electron-pair” bond, while if they are parallel coupled (giv-
ing a triplet state) the interaction will be repulsive at all distances. An inter-
pretation of the origin of the interaction, in terms of forces acting on the
nuclei, had to await the formulation of the Hellmann–Feynman theorem,
first demonstrated by Hellmann2 and rediscovered by Feynman3. The theo-

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 2, pp. 252–268

252 McWeeny:

© 2007 Institute of Organic Chemistry and Biochemistry
doi:10.1135/cccc20070252



rem states that these forces are exactly what one would expect from classi-
cal physics, for nuclei embedded in a ‘charge cloud’ of density –eP(r), where
P(r) is the probability density for finding an electron at point r, just as if
the electronic charge (–e) was ‘smeared out’ into a continuous distribution
of negative charge. This interpretation is nowadays universally accepted.

Figure 1 shows the power of the density concept, in the context of the
hydrogen molecule calculation: the energy curves on the left provide no
simple picture of the origin of H–H interactions. But the build-up of nega-
tive charge in the region between the nuclei gives a graphic interpretation
of the singlet state bonding, while its depletion in the triplet state clearly
corresponds to repulsion at all distances.

In this paper we explore, in a very general way, the link between the two
points of view: interactions in terms of alternative spin couplings, or in
terms of differences of electron density.

THE INTERACTION OF TWO SYSTEMS

Suppose we have two systems, A and B, with given wave functions – possi-
bly ‘exact’+, ΨAa(x1,x2,...,xNA

) and ΨBb(x x x
1 2

, ,... ,
BN
). Here xn stands for the

space-spin variables of electron n and the numbering is such that n = n + NA
will label the electrons of the second system (B); p will serve as a general la-
bel. The composite subscript Aa is read as “system A in state a” and simi-
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FIG. 1
Singlet and triplet states of H2 (Heitler and London1)

+ The term is used with its usual meaning, implying ‘clamped nuclei’ and ‘non-relativistic’.



larly for system B; when the two systems are spin degenerate, the label a,
for example, might stand for one of the 2SA + 1 values of MA (= SA, SA – 1,...,–
SA), the spin z-component.

For two infinitely remote systems, the product ΨAaΨBb will then be a vir-
tually exact wave function, with energy eigenvalue E = EA + EB a sum of the
energies of the separate systems. When the systems are not remote, it is im-
portant to recognize the Pauli principle, making all permutations of the
electronic variables and combining the results with ± signs to obtain a pro-
perly antisymmetric wave function.

The wave function for the composite system A + B may then be written

Ψ Φ Φκ ( , ,... , ) ( ,... , ) ( ,... , )x x x x x x x1 2 1 1N a N b N
K= A[ A BA B

] (r = r + NA) (1)

where the label κ indicates a particular choice of the individual group
states, in this case Aa and Bb, K is simply a normalizing factor.

The antisymmetrizer, for all N = NA + NB electrons, is usually written (nor-
malized so the A2 = A)

A PP
P

= − ∑( !)N 1 � (2)

where �P = ±1 according to the parity (even or odd) of P. This may be re-
written as

A A A A=
+

′
N N

N N
A B

A B
A B( )!

! !
(3)

where AA and AB are antisymmetrizers for the separate systems, while A′ is
a sum of transpositions of variables between the A and B systems. The total
transposition operator, for single exchanges,

T1 = ∑∑ ( , )i j
ji

(4)

is a sum of single transpositions (i,j) for all choices of xi in ΦAa and x
j

in
ΦBb. Similar sums can be defined for multiple exchanges involving n pairs
of variables.
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When the system wave functions are individually antisymmetric, the
operators AA and AB in (3) can each be replaced by unity and the all-
electron antisymmetrizer becomes simply a sum over transpositions, one at
a time, two at a time, etc., plus the unit operator (no transpositions). The
factor K is then conveniently chosen so that the functions are normalized
when A and B are remote. In that case

〈 〉 = 〈 〉Ψ Ψ Φ Φ Φ Φκ κ| ( ! !/ !) |K N N N a b a bA B A B A B

leads at once to

K N N N= −( ! !/ !) /
A B

1 2 . (5)

To allow for spin degeneracy, the wave function for the whole system
will have to be written as a linear combination of terms like (1), with coeffi-
cients determined by solving secular equations, or from symmetry consider-
ations. We therefore need to evaluate matrix elements of the Hamiltonian
H between functions of type (1); and it is well known (see, for example,
McWeeny4) that the results can be given in terms of a small number of den-
sity matrices.

The one-electron density matrix for Ψκ is

ρ κκ κ κ1 2 2 2( | ) ( , ,... , ) * ( , ,... , ) ..x x x x x x x x x; d′ = ′N N NΨ Ψ .xN∫ (6)

where the variables x, x′ (without the label ‘1’) refer to two generic space-
spin points, not to a particular labelled ‘electron 1’, and the integrations are
over the last N – 1 variables alone. There is a corresponding ‘transition’ den-
sity matrix, connecting Ψκ with Ψκ′, obtained on replacing Ψ*κ in (6) by Ψ*κ′,
denoted by ρ1(κκ′ |x;x′).

In dealing with operators which do not involve spin, it is useful to define
a spinless analogue of (6), simply by putting s′ = s in the variable x′ and in-
tegrating over s alone to obtain in general

P s
s s

1 1( | ) ( |κκ ρ κκ′ ′ = ′ ′
′ =
∫r r x x; ; )d . (7)

Corresponding two-electron quantities may be defined in a similar way.
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Matrix elements of all the operators which appear in the Hamiltonian as
symmetric sums, typically ∑ p

N p=1h( ) and ∑ p q
N g p q≠ =1 ( , ), are readily obtained in

terms of the density matrices. Thus, for example, the expectation value of
the one-electron operator sum is++

〈∑h( )p 〉 = 〈Ψκ |∑h h( )| ( |p Ψκ ρ κκ〉 = ′
′
∫ 1 x x x

x = x

; )d (8)

where the notation x′ = x means the integration is completed after the
operator has worked on the function of x; this defines the ‘integral trace’
operation. The off-diagonal matrix element 〈Ψκ′ |∑h|Ψκ 〉 follows in the same
way from ρ1(κκ′ |x;x′). It should be noted that the order of the functions Ψκ
and Ψκ′ is important: the primed function, on the left in the matrix ele-
ment, appears on the right in the density matrix – being the complex con-
jugate function in each case. The operator h works always on the unprimed
variable x. It is important to remember the general form of ρ1(κκ′ |x;x′)
when spin variables are explicitly included. For any given state κ = κ′ , drop-
ping the redundant state labels, expectation values of one-electron opera-
tors follow from

ρ1 (x x; ) =′ P s s P s sα α α βα α α β, ,( ; ) ( ) *( ) ( ; ) ( ) *( )r r r r′ ′ + ′ ′ +

+ P s s P s sβ α β ββ α β β, ,( ; ) ( ) *( ) ( ; ) ( ) *( )r r r r′ ′ + ′ ′ (9)

this being the integral-operator form of the density operator ρ1, whose ef-
fect on any space-spin function ψ(x) is given by ρ1ψ(x) = ρ ψ1 ( (x x x x; ) )d′ ′ ′∫ .
For any state of definite spin, however, only the α,α and β,β components
are non-zero. On using (7),

P P P1 ( ; ) ( ; ) ( ; ), ,r r r r r r′ = ′ + ′α α β β (10)

and on using the analogue of (8), with spin included, to evaluate the expec-
tation value of the total spin z-component, we obtain
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〈 〉 = ′ =
′
∫ ∫S Sz zρ1 ( (x x x r r r

x = x

; )d ; )dQz (11)

where, generally,

Q P Pz ( [ ( ; ) ( ; )], ,r r r r r r; ) =
1
2

′ ′ − ′α α β β (12)

and has a diagonal element+++ which is the density of spin angular momen-
tum around the z-axis. Thus

P1(r) = Pα(r) + Pβ(r) (13)

QS(r) =
1
2

[Pα(r) + Pβ(r)] (14)

are, respectively, the electron density and the spin density.
It is convenient in what follows to express the density matrices them-

selves as expectation values, by defining an operator O1(p) which (when it
appears in a matrix element) replaces xp in the Ψ-factor by x; and in the
Ψ*-factor by x′. Thus

〈∑O1 ( )p 〉 = N〈Ψκ |∑O1 1( )|Ψκ 〉 =

= ′∫N N N NΨ Ψκ κ( , ,... , ) * ( , ,... , ) ...x x x x x x x x2 2 2d (15)

in agreement with (6). (The factor N results from the fact that (owing to
antisymmetry in the variables x1,x2,...,xN) every term in ∑O1(p) will give an
identical contribution to the matrix element.)

Since the wave functions for systems A and B will in general have a non-
zero overlap, the composite functions defined in (1) will usually be neither
normalized nor orthogonal. Let us distinguish the corresponding density
functions by adding a tilde. To get the electron density for two general sys-
tems, when they begin to interpenetrate, we shall have to evaluate the
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overlap integrals 〈Ψκ′ |Ψκ〉 and corresponding one-electron density contribu-
tions. To obtain the energy we also need the two-electron or ‘pair’ density
ρ2. This will not be required explicitly in the present analysis, where atten-
tion is focussed on the electron density alone, but will be indicated for
completeness.

With the antisymmetrized, but un-normalized, functions of type (1) we
must therefore evaluate

~ ( |ρ κκ ) = κ κ0 ′ 〈 〉′Ψ Ψ (16)

~ | | )ρ κκ1 1 1′ ′x x; = 〈 〉′ ∑Ψ Ψκ κ| O1 ( )|p
p

(17)

~ | | , )ρ κκ2 1 2 1 2′ ′ ′x x x x, ; = 〈 〉′
≠
∑Ψ Ψκ κ| O O1 2( ) ( )|p q
p q

. (18)

These density functions will completely determine all matrix elements of
one- and two-electron operator sums between functions of type (1). Corre-
sponding spinless quantities follow at once on identifying spin variables
s, s′ and integrating over s, as in (7).

It will be noticed at this point that subscripts have been added to the
variables in the density matrices simply to distinguish first and second vari-
ables – not indicating ‘electron 1’ and ‘electron 2’. The Pauli principle has
been respected from the start by insisting on the use of fully antisymmetric
wave functions.

REDUCTION OF THE MATRIX ELEMENTS

Explicit and general results for all three densities have been given else-
where5 and will not be repeated here: one example will be sufficient. To re-
duce (16) we introduce the antisymmetrizer in the form (4) and take only
up to single-interchange terms in A′ = I – T1 + T2 + ... . Thus, with Ψκ =
K a bA[ ]Φ ΦA B it follows easily that

~ ( | | |ρ κκ ) = κ κ0 ′ 〈 〉 = 〈 ′ 〉′ ′ ′Ψ Ψ Φ Φ Φ ΦA B A Ba b a bA (19)

using the ‘normalization’ given in (5).
On putting A′ ≈ I – T1, the term T1 = ∑

i j
i j

,
( , ) gives a contribution
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〈 〉 = 〈′ ′ ′ ′∑Φ Φ Φ Φ Φ Φ ΦA B A B A B A B Aa b
i j

a b a bi j N N| ( , )| |( , )|
,

1 1 a bΦB 〉

where 1, 1 refer to the first variables in ΦAa and ΦBb, respectively, the factor
NANB resulting from the NA choices of i and the NB choices of j. From the
definition of the one-electron density matrix in (6) et seq., this last result
may be written alternatively as

〈 〉 = ′ ′′ ′ ∑Φ Φ Φ ΦA B A B
A B

a b
i j

a bi j aa bb| ( , )| ( | ; ) ( |
,

ρ ρ1 1 1 1x x x x x x1 1 1 1
; )d d∫ .

Equation (19) now yields

~ ( ( | ; ) ( | ; )ρ κκ ) = δ δ ρ ρ0 1 1 1 1 1 1′ − ′ ′ ′ ′′ ′aa bb aa bbA B dx x x x x1 1d ′∫ x (20)

where the name of the dummy variable x
1

has been changed to ′x1 for typo-
graphical convenience.

The one- and two-electron densities in (17) and (18) may be reduced in a
similar way, the full expansions being given elsewhere5.

The last step in the reduction is the separation of space and spin vari-
ables. In general, for two systems with total-spin quantum numbers SA, SB,
the wave functions Ψκ = KA[ΦAaΦBb] will have degeneracy (2SA + 1)(2SB + 1),
corresponding to the quantum numbers MA, MB. These will serve to label
different multiplet components in place of the indices a, b. The degeneracy
is resolved on mixing the composite functions to get a resultant spin state
with quantum numbers S, M, with S going from SA + SB to |SA – SB| in integer
steps. A general spin-coupled product function will then be

Φ Φ ΦS M
S S M

M MS
S S S

M M M, A, B,
A B

A B

B A

A B
= − + ×




− −( ) ( )( ) /1 2 1 1 2 


∑

M MA B,

where the round-bracket quantity is the coupling coefficient, expressed as a
Wigner 3j-symbol (see, for example, Edmonds6 for the usual phase conven-
tions). A satisfactory wave function follows on normalizing and antisym-
metrizing

Ψ Φ ,S M S MK, = A (21)
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where K will again be chosen so that ΨS,M is normalized for infinite separa-
tion of A and B and takes the value K = (N!/NA!NB!)1/2.

Again we choose only one example, that corresponding to (16), passing
directly to the spinless quantity

~
P0 which follows after a final spin integra-

tion. This becomes

~
|( ...)|, ,P S M S M0 1= 〈 − + 〉Ψ ΨI T (22)

and will give a zero-interchange term unity, followed by the single-
interchange term

〈 〉 = 〈 〉∑Ψ Ψ Ψ ΦS M S M S M
i j

S Mi j i j, , ,
,

,| | | ( , ) ( , ) |T1 space spin . (23)

On using the Dirac identity

( , ) [ ( ) ( )]i j i jspin ≡ + ⋅1
2

1 4S S

and noting there are NANB equivalent choices of the two summation indi-
ces, the single-interchange term (23) becomes

1
2

1 1 2 1 1N N N NS M S M S MA B space A B space〈 〉 + 〈Ψ Φ Φ, , ,|( , ) | |( , ) S S( ) ( )| ,1 1⋅ 〉ΨS M . (24)

The two matrix elements in this result may be dealt with separately: the
first leads to a product N NA

A
B

B− −1
1 1 1

1
1 1 1

ρ ρ( ; ) ( ; )x x x x , followed by one inter-
change of space variables and a final spin integration. This becomes

Term 1 =
1
2 1 1 1 1 1 1 1 1

P PA B d d( ; ) ( ; )r r r r r r∫ . (25)

In the second matrix element, the scalar product may be written in
spherical tensor form as

S S( ) ( ) ( ) ( ) ( )1 1 1 1 1⋅ = − −∑ q
q q

q

S S

where the tensor index takes the values q = 0, ±1 (S being of rank 1). We
must then evaluate

Collect. Czech. Chem. Commun. 2007, Vol. 72, No. 2, pp. 252–268

260 McWeeny:



〈 − 〉−∑Ψ ΨS M
q

q q
q

S M, ,|( , ) ( ) ( ) ( )|1 1 1 1 1space S S (26)

in which Sq(1) works only on the A-factorΦA, AM and S–q only on the B-factor
ΦB, BM . That being so, the matrix element between spin-coupled functions
can be expressed as one between single products (see, for instance,
Edmonds6) evaluated for a particular choice of the quantum numbers MA,
MB. Thus we find

〈 − 〉 =−∑Ψ ΨS M
q

q q
q

S M, ,|( , ) ( ) ( ) ( )|1 1 1 1 1space S S

= −






 −






− +( ) ( )

–

1
1

1

0

1

S S S S S S

S S

S S

S S

S
B A A B

B A

A A

A A

B B

B B

1

0

1
S

S S−






 ×

–

× 〈 〉Φ Φ Φ ΦA, B, space A, B,A B A BS S z z S S|( , ) ( ) ( )|1 1 1 1S S (27)

where we have chosen MA = SA, MB = SB, in the product functions and q = 0
(spin z-component). The factor in curly brackets is a Wigner 6j-symbol.

On multiplying by 2N NA B and performing the space and spin integra-
tions (27) takes the form

Term 2 = 2 1f S S S Q QS S( , , ) ( ; ) ( ; )A B
A B d d′ ′ ′∫ r r r r r r (28)

where QS
A ( ; )′r r and QS

B ( ; )r r′ are spin density matrices, which arise when the
spin operator Sz works on the one-electron density ρ1. Thus, in general,

Q s sS z
s s

( ; ) ( ; )r r x x′ = ′ ′
′ =
∫ S ρ1 d d (29)

for the ‘standard state’, chosen above, with M = S. The ‘diagonal element’ of
this quantity, obtained by putting r′ = r, gives the density of spin angular
momentum, around the z-axis, at point r. It has been fully discussed else-
where4, along with other spin-dependent densities, and has been encoun-
tered already in (14) where it appeared as half the difference of the up-spin
and down-spin components of the electron density P(r) = Pα(r) + Pβ(r).
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The numerical coefficient in (28) depends only on the nature of the spin
coupling and may be expressed as an expectation value of the scalar prod-
uct operator SA · SB in a spin state ΘS,M with quantum numbers S, M. In fact5

f S S S S S S M S M1
1( , , ) ( ) | |, ,A B A B

A B= 〈 ⋅ 〉− Θ ΘS S . (30)

It only remains to collect the terms in (25) and (28), which will give
~
P0 in

the form (1 – Term 1 – Term 2), and to extend the analysis to
~
P1 , again in-

cluding all terms up to single interchanges. The results are recorded below

~
( ; ) ( ; )P P P0 1 11

1
2

= − ′ ′ ′∫ A B d dr r r r r r –

− ′ ′ ′∫2 1f S S S Q QS S( , , ) ( ; ) ( ; )A B
A B d dr r r r r r (31)

which is needed for normalization, and
~
P1 , which gives the normalized one-

electron density matrix as P P P1 0 1( ; )
~ ~

( ; )r r r r′ = ′–1 , where

~
( ; ) ( ; ) ( ; ) ( ; )P P P P1 1 1 1 1 1 1

1
2

r r r r r r r r r –′ = ′ − ′ ′ ′ ′∫A A B d

− ′ ′ ′ ′ −∫2 1 1 1 1f S S S Q QS S( , , ) ( ; ) ( ; )A B
A B d dr r r r r r

− ′ ′ ′ ′∫
1
2 2 1 1 1 1 1 1P PA B, d( , ; ) ( ; )r r r r r r r –

− ′ ′ ′ ′ +∫2 1 1 1 1 1 1 1f S S S Q QSL S( , , ) ( , ; ) ( ; )A B
A B, d dr r r r r r r r

+ [similar terms with A ↔ B]. (32)

Here QSL denotes a two-electron analogue of the spin density function de-
fined in (29), the spin trace referring to the first of the two variables in the
two-electron density ρ2(x1,x2;x′1,x′2); in general

Q sSL z
s s

( , ; ) ( ; )r r r r x, x x , x x2 21 2 1 2 2 1 2

1

′ ′ = ′ ′
′ =

, d dS (1)ρ
1

∫ .
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This function determines the spin-orbit coupling in a system and is thus
aptly called the “spin-orbit coupling density”.

The one-electron density matrix P1(r;r′), defined above, gives a complete-
ly general expression for the electron density (on putting r′ = r), for any
two colliding systems, atoms or molecules, given their exact wave functions
in the absence of interaction. In practice it will be necessary to use approxi-
mate functions, usually expressed in orbital form, and this will provide a
means of defining the region of interpenetration and of discussing the elec-
tron density changes taking place.

PARTITIONING OF THE ELECTRON DENSITY

Let us first use a Hartree–Fock approximation to the wave function of each
system: this will take the form of a single determinant of spin-orbitals, with
doubly-occupied orbitals φiα,φiβ providing a closed-shell ‘core’ and singly-
occupied orbitals φjα providing an open shell in the ‘standard state’ of max-
imum multiplicity, M = S = half the number of parallel-coupled spins. This
approximation is intended only to illustrate the general nature of the re-
sults and in no way detracts from the generality of the approach.

For a single determinant of spin-orbitals ρ1 1( )x x, ′ = ∑pψ ψp p( ) * ( )x x′ and
it is well known that ρ1 then determines all other density functions. In par-
ticular,

ρ ρ ρ ρ ρ2 1 2 1 2 1 1 1 1 2 2 1 2 1( ) ( ) ( ) ( )x x x , x x x x x x x, ; ; ; ;′ ′ = ′ ′ − ′ 1 1 2( )x x; ′ .

Integration of ρ1 over spin gives the spinless density P1(r1;r2) = Pα,α(r1; ′r1 ) +
Pβ,β(r1; ′r1 ) and the standard spin density (14), as half the difference of Pα,α
and Pβ,β. In what follows it is convenient to define, with an obvious abbre-
viation

P P P Q P P SDS1 1 2= + = − =α β α β, . (33)

With a similar notation, the spin-orbit coupling function (3) is more con-
veniently replaced by

Q SDSL2 1 2 1 2 1 2 1 22( , ; ) ( , ; )r r r r r r r r′ ′ = ′ ′, , . (34)

In terms of P1 and Q1 it follows easily that
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P2 1 2 1 2( , ; )r r r r′ ′ =,

= ′ ′ − ′ ′ +P P P P Q1 1 1 1 2 2 1 2 1 1 1 2 1

1
2

( ; ) ( ; ) [ ( ; ) ( ; ) (r r r r r r r r r2 1 1 1 2; ) ( ; )]′ ′r r rQ (35)

while the spin-orbit function becomes

Q2 1 2 1 2( , ; )r r r r′ ′ =,

= ′ ′ − ′ ′ +Q P P Q Q1 1 1 1 2 2 1 2 1 1 1 2 1

1
2

( ; ) ( ; ) [ ( ; ) ( ; ) (r r r r r r r r r2 1 1 1 2; ) ( ; )]′ ′r r rP . (36)

Let us now introduce two quantities which will measure the degree of
overlap between the charge and spin distributions in system A and those in
system B.

M P PP = ′ ′ ′∫ 1 1 1 1 1 1 1 1
A B d d( ; ) ( ; )r r r r r r (37)

M Q QQ = ′ ′ ′∫ 1 1 1 1 1 1 1 1
A B d d( ; ) ( ; )r r r r r r (38)

The integrands in these quantities allow us to define density ‘products’
such as

P Q Q P Q Q1 1 1 1 1 1 1 2 1 2 1
A B A A B A d d( ; ) ( ; ) ( ; ) ( ; )r r r r r r r r r r′ = ′ 2∫ (39)

where the intermediate variables follow a ‘chain rule’.
With these definitions the (un-normalized) electron density in the com-

posite system A + B, given in (32), takes the form

~
( ; ) ( ) ( ; ) ( ; )P M P P PP1 1 1 11

1
2

1
2

r r r r r r′ = − ′ − ′ +A B A

+ ′ + ′ −1
4

1
41 1 1 1 1 1P P P Q P QA B A A B A( ; ) ( ; )r r r r

− ′ + ′ +1
2 1 1 1θ[ ( ; ) ( ; )]M P Q QQ

A B Ar r r r
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+ ′ + ′ +1
4 1 1 1 1 1 1θ[ ( ; ) ( ; )]P Q Q Q Q PA B A A B Ar r r r

+ [similar terms with A ↔ B] (40)

where only θ depends on the spin coupling, being given by

θ = 〈 ⋅ 〉 =
+ − + − +S SA B

A B

A A B B

A BS S

S S S S S S

S S

( ) ( ) ( )1 1 1

2
. (41)

It is easy to show that the normalized charge density P P P1 0
1

1( )
~ ~

( )r r= − inte-
grates correctly to give the total number of electrons N = NA + NB. But what
concerns us here is how much of the total charge remains distributed as it
was in the free systems and how much has gone into the region of overlap
between A and B. And the answer is given by separating the terms in

~
( )P1 r rd∫ into parts referring to the A and B systems alone and those that

come jointly from A and B system densities. With neglect of terms involv-
ing triple and higher products, the un-normalized density may be written

~
( ) ( ) ... ( ) ( ) ...P P P P1 1 1 1

1
2

r r r r= + − +A B A

+ + − +P P P1 1 1

1
2

B A B( ) ... ( ) ( ) ...r r r .

On multiplying by the normalizing factor ( )1 1
2

1
2

1− − −M MP Qθ the total
electron density becomes

P
P P P P Q Q

M MP Q

=
+ − −
− −

1 1 1 1 1 1

1
2

1
21

A B A B A Bθ
θ

. (42)

The partitioning of the total charge, of N = NA + NB electrons, is obtained
by integrating over all space: the amount of charge migrating from the sep-
arate systems, before interaction, into their region of overlap easily follows
as
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∆N
M M

M M
P Q

P Q

=
+

− −

θ

θ1 1
2

1
2

. (43)

The analogy with the results of Heitler and London1 is clear. The extreme
values of θ, corresponding to parallel and antiparallel coupling of the total
spins of the two systems, follow from (41): they are, using SA for the greater
of the two spins,

θ θmax min, ( ) /= = − +1 1 S SA A

and the corresponding values of the charge migration are then (to first or-
der in the small quantities MP, MQ)

∆ ∆N M M N M M M SP Q Q P Qparallel antiparallel A= − + = + +( ), ( ) ( / ) . (44)

For two closed-shell systems, the spin density terms are absent and the
interaction leads to repulsion at all distances: this is often described as the
“exchange repulsion” between closed-shells, but in fact has nothing to do
with electron exchange, arising simply because electron density is ‘pushed
out’ from the overlap region. On the other hand, with non-zero spin densi-
ties, θ may take negative values, giving an attraction between the systems,
roughly in proportion to the degree of overlap of their spin distributions.

CONCLUSION

It has been shown that the interaction of two systems, atoms or molecules
of arbitrary size and complexity, may be described formally in terms of
a coupling between their total spins, thus extending and generalizing the
simple model first proposed by Heitler and London1 80 years ago. In gen-
eral, the energy of interaction arising from the overlap of the two systems,
A and B, may be expressed as the expectation value of a spin Hamiltonian
of the form

Hspin
A B A B= + ⋅ + ⋅ +E E E0 1 2

2( ) ( ) ...S S S S (45)

within a manifold of pure spin states |S,M〉 . Only the numerical coefficients
depend on the many-electron wave functions of the two systems and the
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series is rapidly convergent in terms of the degree of overlap between their
electron and spin distributions.

The present paper has emphasized the qualitative interpretation of the
interaction, in terms of the Hellmann–Feynman forces called into play by
the electron density changes in the overlap region: it applies only in the
early stages of interaction but allows us to discuss quantitatively, and with-
out making approximations of any kind, the factors responsible for cohe-
sion. The basic question is: If two systems collide, will they simply bounce?
Or will they stick? And the answer is determined mainly by the spin-
coupling factor θ, along with the geometry of the approach configuration,
which fixes in turn the overlap parameters MP and MQ.

There are many potential applications of the approach. In particular,
with much current interest in ‘lock and key’ chemistry, it is important to be
able to discuss, on a rigorous quantum mechanical basis, the encounter be-
tween a large molecule A, say, and a small reactant species B. System A may
have free-radical character, described by a spin density extending over the
whole molecule, and one needs to characterize its response to the attacking
reagent. A detailed and accurate energy calculation is often out of the ques-
tion; but an approach along the lines proposed in this note makes no heavy
computational demands, little more than an evaluation of the parameters
MP, MQ in Partitioning of the Electron Density, which depend only on over-
lap integrals and can be estimated using quite simple wave functions.

Applications involving the concept of ‘molecular similarity’ may be found
elsewhere7. It must be stressed that the present note is concerned only with
the close approach of two systems, where their electron distributions inter-
penetrate and are significantly distorted. More generally, other factors be-
come important, e.g., the polarization and dispersion interactions first
identified by London8. A more complete discussion, including such terms,
is available elsewhere9 and the whole approach has been illustrated in
numerical calculations on some simple dimers10. A general review, empha-
sizing the physical interpretation of the interactions, has been given by
Magnasco and McWeeny11.
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